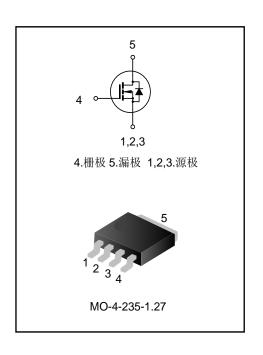


220A、40V N沟道增强型场效应管

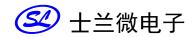

描述

SVGQ041R0NLP N 沟道增强型功率 MOS 场效应晶体管采用士 兰的 LVMOS 工艺技术制造。先进的工艺及元胞结构使得该产品具有较低的导通电阻、优越的开关性能及很高的雪崩击穿耐量。

该产品可广泛应用于不间断电源及逆变器系统的电源管理领域。

特点

- ◆ 符合 AEC-Q101 标准
- ◆ 220A, 40V, R_{DS(on)} (典型值) =0.85mΩ@V_{GS}=10V
- ◆ 低栅极电荷
- 低反向传输电容
- ◆ 开关速度快
- ◆ 100%雪崩测试
- ◆ 无铅管脚镀层
- ◆ 符合 RoHS 环保标准
- ◆ 最大结温: T_{jmax} =175°C

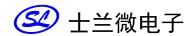


关键特性参数

参数	参数值	单位
V_{DS}	40	V
V _{GS(th)}	1.5~2.4	V
R _{DS(on),max}	1.0	mΩ
I _D	220	Α
$Q_{g.typ}$	98	nC

产品规格分类

产品名称	封装形式	打印名称	环保等级	包装方式
SVGQ041R0NLPTR	MO-4-235-1.27	Q041R0NLP	无卤	编带


极限参数(除非特殊说明, T_J=25°C)

参数		符号测试条件		单位				
少 奴		10.25	测风东什	最小值	典型值	最大值	丰江	
栅源电压		V_{GS}		-20		20	V	
漏极电流	(注 1)	1	T _C =25°C			220	Α	
柳似电机	(在1)	I _D	T _C =100°C			220	А	
漏极脉冲电流	(注2)	I _{DM}	T _C =25°C			880	А	
耗散功率	(注3)	P _D	T _C =25°C			167	W	
单脉冲雪崩能量		E _{AS}	L=0.5mH, V_{DD} =32V, R_G =25 Ω ,			506	mJ	
单脉冲雪崩电流		I _{AS}	开始温度T」=25℃			45	А	
单脉冲雪崩能量		E _{AS}	L=0.1mH, V_{DD} =32V, R_G =25 Ω ,			387	mJ	
单脉冲雪崩电流		I _{AS}	开始温度T」=25℃			88	А	
工作结温范围		TJ		-55		175	°C	
贮存温度范围		T _{stg}		-55		175	°C	

热特性

参数	符号	测试条件	参数值			单位
少 奴	10.5	测 成 泉 什	最小值	典型值	最大值	半世
芯片对表面热阻,底部	$R_{ heta JC}$				0.9	°C/W
芯片对环境的热阻	$R_{\theta JA}$				50	°C/W
焊接温度 (SMD)	T_{sold}	回流焊: 10±1 sec, 3times	-		260	°C

杭州士兰微电子股份有限公司 http://www.silan.com.cn

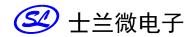
电气参数(除非特殊说明, T_J=25°C)

静态参数

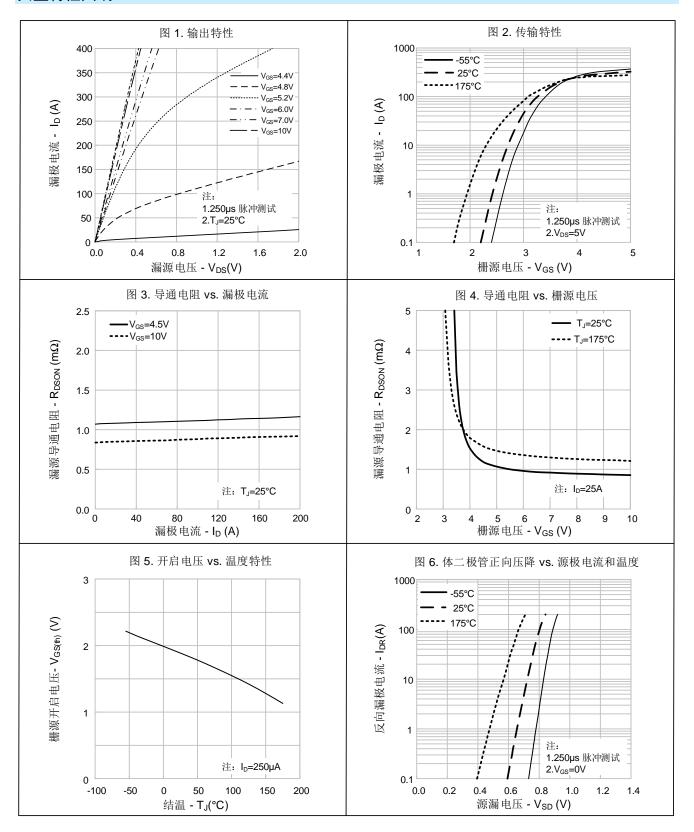
参数	符号	测试条件		参数值		
	10.2		最小值	典型值	最大值	单位
漏源击穿电压	BV _{DSS}	V_{GS} =0 V , I_D =250 μ A	40			V
漏源漏电流	1	V _{DS} =40V, V _{GS} =0V, T _J =25°C		-	1.0	μA
	I _{DSS}	V _{DS} =40V, V _{GS} =0V, T _J =150°C		8.0		μΑ
栅源漏电流	I _{GSS}	$V_{GS}=\pm 20V$, $V_{DS}=0V$			±100	nA
栅极开启电压	$V_{GS(th)}$	$V_{GS}=V_{DS}$, $I_{D}=250\mu A$	1.5		2.4	V
导通电阻	R _{DS(on)}	V _{GS} =10V, I _D =25A		0.85	1.0	m $Ω$
栅极电阻	R_g	f=1MHz		1.4		Ω

动态参数

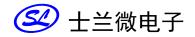
参数	符号	测试条件	参数值			单位
少 奴	10.2	测风泉什	最小值	典型值	最大值	半四
输入电容	C _{iss}			6480		
输出电容	Coss	f=1MHz,V _{GS} =0V,V _{DS} =25V		1717		pF
反向传输电容	C _{rss}			85		
开启延迟时间	t _{d(on)}			21		
开启上升时间	t _r	$V_{DD}=30V, V_{GS}=10V, R_{G}=5.0\Omega, I_{D}=25A$		68		no
关断延迟时间	t _{d(off)}	(注 4, 5)		97		ns
关断下降时间	t _f			50		
栅极电荷量	Qg			98		
栅极-源极电荷量	Q _{gs}	V_{DD} =32V, V_{GS} =10V, I_{D} =25A		22		nC
栅极-漏极电荷量	Q_{gd}	(注 4, 5)		20		
栅极-平台电压	V _{plateau}			3.7		V

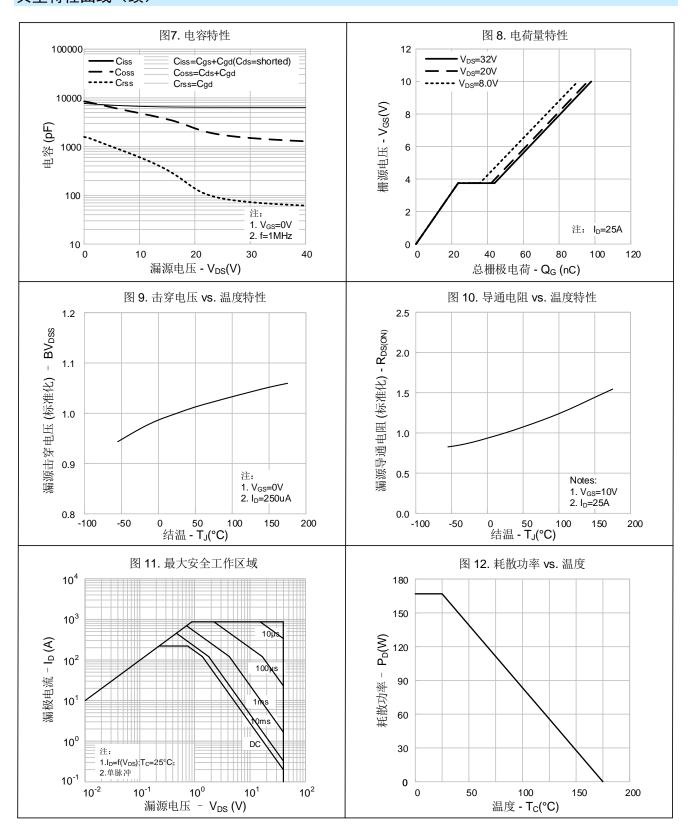

反向二极管特性参数

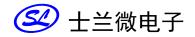
参数	符号	测试条件		单位		
少 奴	10.2	测风乐片	最小值	典型值	最大值	丰加
连续二极管正向电流	I _S	MOS 管中源极、漏极构成的反偏 P-N			220	Α
二极管脉冲电流	I _{S,pulse}	结			880	A
源-漏二极管压降	V_{SD}	I _S =25A, V _{GS} =0V			1.4	V
反向恢复时间	T _{rr}	I _S =25A, V _{GS} =0V, V _R =20V		70		ns
反向恢复电荷	Q _{rr}	dl _F /dt=100A/µs (注 4)		101		nC

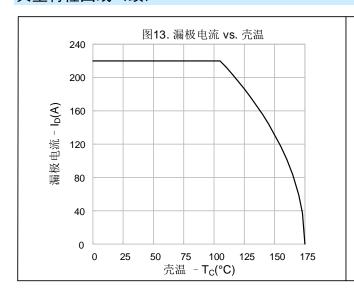

注:

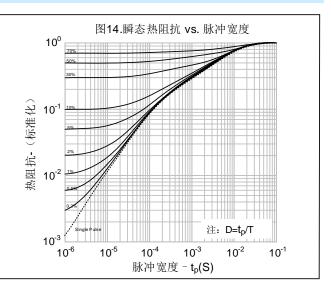
- 1. 额定值仅指说明书中25度壳温下的最大绝对值,若壳温高于25度,需根据实际环境条件降额;
- 脉冲时间5µs,脉冲宽度受限于最大结温; 2.
- 耗散功率值会随着温度变化而变化,当大于25°C时耗散功率值随着温度每上升1度减少1.11W/°C; 3.
- 脉冲测试:脉冲宽度≤300µs,占空比≤2%; 4.
- 5. 基本上不受工作温度的影响。


杭州士兰微电子股份有限公司

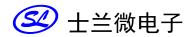

典型特性曲线


版本号: 1.3 共10页 第4页

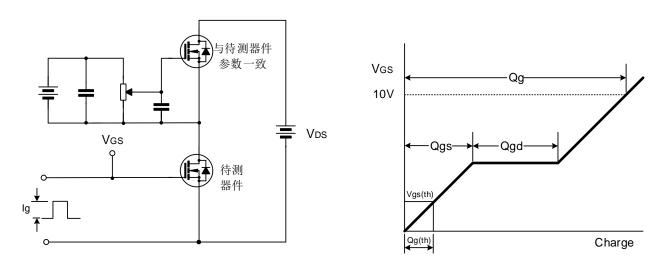

典型特性曲线 (续)



版本号: 1.3 共10页 第5页



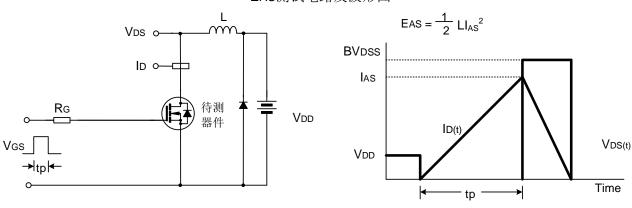
典型特性曲线 (续)

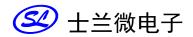


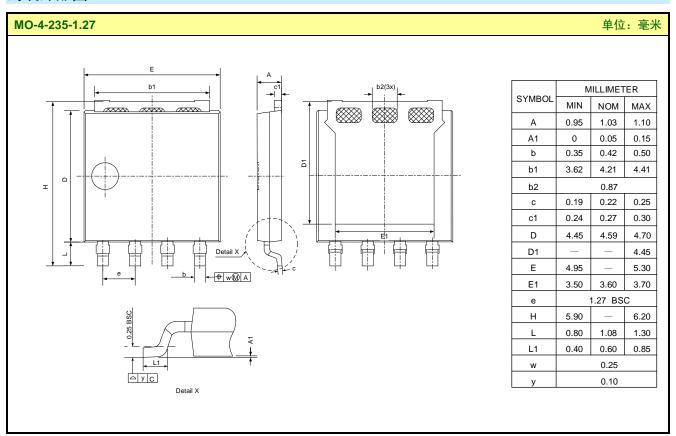
版本号: 1.3 共10页 第6页



典型测试电路

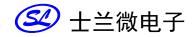

栅极电荷量测试电路及波形图


开关时间测试电路及波形图


EAS测试电路及波形图

版本号: 1.3 共10页 第7页

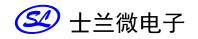
封装外形图



MOS电路操作注意事项:

静电在很多地方都会产生,采取下面的预防措施,可以有效防止 MOS 电路由于受静电放电影响而引起的损坏:

- 操作人员要通过防静电腕带接地。
- 设备外壳必须接地。
- ◆ 装配过程中使用的工具必须接地。
- 必须采用导体包装或抗静电材料包装或运输。


版本号: 1.3

重要注意事项:

- 士兰保留说明书的更改权,恕不另行通知。
- 2. 客户在采购时应获取我司最新版本资料,并验证相关信息是否最新和完整。产品使用前请仔细阅读本说明书、应 用说明书等相关资料,包括其中的电路操作注意事项等。
- 士兰对士兰产品的任何特定用途的适用性不做任何保证。本产品的设计意图、设计定义、设计无意被应用(本文 3. 中的应用包括使用等)于医疗设备、救生设备、航空航天设备、非民用设备和非民用用途等(本文中的设备包括 系统、装置等,均简称设备)。产品也不得应用于被任何适用法律或法规禁止制造、使用或销售的任何设备或系 统中(以上称"非预期用途")。如果产品被用于非预期用途,因此类应用产品的全部风险由客户自行承担,士兰 对被应用于非预期用途的产品不承担任何责任。如客户拟将士兰产品应用于合理预期产品故障或其使用后果会导 致人身伤害或严重财产或环境损害的,客户须做充分的评估、测试和验证,士兰对该等应用不承担任何责任。
- 本文件和产品的应用说明书等相关资料所描述的产品的应用仅用于说明目的,士兰不保证此类应用无需进一步测 4. 试、验证或修改就可直接使用。士兰对产品应用或客户产品设计等方面的任何协助不承担责任。客户须对士兰产 品的应用和使用士兰产品的客户产品(本文中"使用产品"、"应用士兰产品"、"产品应用"与"使用士兰产品的 客户产品"均同义)的设计、制造和使用负责。客户有完全的责任采取下列各项措施:1)验证和确定士兰产品 是否适合于客户的应用和客户产品; 2)应用士兰产品或使用士兰产品来开发设计客户产品时,须遵守客户所在 行业的所有适用标准,并进行充分的测试和验证: 3) 尽管士兰不断致力于提高产品的质量和可靠性,但半导体 产品在各种应用环境下都有一定的失效或发生故障的可能,客户应遵守安全标准,并为使用士兰产品的客户产品 提供充分的设计和保护,以最大限度地降低风险并避免产品故障或故障可能导致的人身伤害或财产损失;4)在 使用产品时请不要超过产品的相关最大额定值,超过一个或多个极限值的应力将对产品和设备(客户产品)造成 损坏或影响设备的可靠性, 5)确保使用士兰产品的客户产品的设计、制造和使用完全符合客户所在行业的所有 适用标准、安全标准以及其他要求。本文件提供的参数在不同应用中可能而且确实会有所不同,实际性能可能会 随时间而变化。客户须在产品的有效静态存储期内使用完毕,客户如对士兰产品的有效静态存储期有任何疑问的, 请即时联系士兰对接销售人员或士兰客户服务支持和销售管理部,对于超过静态存储期使用的,士兰不承担任何 责任。
- 5. 未经士兰事先书面同意,不得对产品进行拆解、反向工程、更改、修改、反编译或复制。
- 6. 购买产品时请认清士兰商标,如有疑问请与本公司联系。我司产品不通过淘宝等第三方电子商务平台销售。如客 户自此类平台采购的,在采购之前务必书面联系我司,以确认产品为士兰原厂正品。
- 客户在应用和使用产品时请务必遵守相关法规,包括但不限于贸易管制法规等。本产品为民用电子产品,请勿应 7. 用于非民用领域。
- 产品提升永无止境, 我公司将竭诚为客户提供更优秀的产品! 8.
- 9. 我司网站 http://www.silan.com.cn

版本号: 1.3

SVGQ041R0NLP 说明书

产品名称: SVGQ041R0NLP 文档类型: 说明书

版 权: 杭州士兰微电子股份有限公司 公司主页: http://www.silan.com.cn

版 本: 1.3

修改记录:

1. 更新特点

2. 更新参数及曲线

版 本: 1.2

修改记录:

1. 更新极限参数

2. 更新曲线模板

3. 更新重要注意事项

版 本: 1.1

修改记录:

1. 删除焊接温度的波峰焊条件

2. 更新典型电路图

3. 更新重要注意事项

版 本: 1.0

修改记录:

1. 正式版本发布

杭州士兰微电子股份有限公司

http://www.silan.com.cn

版本号: 1.3